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You are free, therefore choose — that is to say, invent.
Sartre, L’existentialisme est un humanisme

1. Introduction

Philosophy, and especially metaphysics, has often been attacked on either
epistemic or semantic grounds. Anything outside of experience and the laws
of logic is said to be unknowable, and according to Wittgenstein and the log-
ical positivists, there are no such things to know; metaphysical disputes are
either meaningless or merely verbal. This was thought to explain philoso-
phy’s supposed lack of progress: philosophers argue endlessly and fruitlessly
precisely because they are not really saying anything about matters of fact
(Wittgenstein,1 Remark 402; Carnap2).

Since the mid-twentieth century, the tide has been against such views,
and metaphysics has re-established itself within the analytic tradition. On-
tology, essentialism, and de re necessity have regained credibility in many
eyes and are often investigated by excavating intuitions of obscure origin.
Relatedly, externalist semantic theories have claimed that meaning or ref-
erence has a secret life of its own, largely unfettered by our understanding
and intentions (Kripke;3,4 Putnam5,6). ‘Water’, it is claimed, would denote
H2O even if we had never discovered that particular molecular structure,
and this is allied with the view that such structure is metaphysically essen-
tial to water — that water could not have been otherwise (Kripke3,4).

I wish to explore a third way, an approach to philosophical problems that
is sympathetic to Wittgenstein and the positivists’ diagnosis of philosophy
(“[P]hilosophical problems arise when language goes on holiday”, Wittgen-
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stein,1 Remark 38), while rejecting their gloomy prognosis and Wittgen-
stein’s anti-interventionist prescription (“Philosophy leaves everything as
it is”; Wittgenstein,1 Remark 124). I will call this third way the Method of
Conceptual Articulation (MCA). In general, it consists in refining or mod-
ifying concepts, or engineering altogether new ones, so that an apparently
“empty” question acquires a satisfying answer — or if you prefer, so that
some related, more specific question emerges that has a definite answer and
is relevant to some motivation.a When we find that we have posed a ques-
tion that we ourselves do not entirely understand, we should not demand,
‘Still, what is the true answer?’ but step back and ask, ‘What more pre-
cisely would we really like to know?’ In this way, even questions that are
metaphysical in the pejorative Viennese sense, questions with no factual
answers (if such there be), can nonetheless be answered, for they can be
given cognitive content,b and perhaps in a well motivated way. By refining
or modifying our concepts and questions, I think we can “fill” some initially
empty questions, and even solve philosophical problems, which I define here
as finding definite answers that are relevant to our motivations.

This approach is partly inspired by, and endorses, a certain libertari-
anism that one finds in the views and practices of at least some modern
mathematicians, namely the view that we are free to develop concepts and
introduce objects as we wish, provided they do not spawn inconsistency.
As Cantor put it, “Mathematics is entirely free in its development, bound
only by the self-evident concern that its concepts be both internally with-
out contradic-tion and stand in definite relations, organized by means of
definitions, to previously formed, already existing and proven concepts”
(Cantor,7 p. 79). On that view, whatever we can consistently define is a
legitimate object of study. More recently, Wilder wrote of modern abstract
algebra,

From this it is evident that the modern mathematician has lost
the qualms of his fore-bears regarding the ‘reality’ of a ‘number’
(or other mathematical entity). His criteria of acceptance are of

a The MCA has many precedents, perhaps most clearly in Carnap.2 But there the
connection between ontology and language choice was treated as another way to dismiss
metaphysics rather than rehabilitate it.
b Of course, this depends on how we individuate questions. If we suppose that any
change in cognitive content (induced by a change in language or theory) implies that we
are dealing with a different question, then trivially the content of a question can never

change. But this seems to be a purely verbal issue; I do not think anything here rides on
it.
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a completely different sort, involving such matters as consistency,
utility of the concept, and the like. (Wilder,8 p. 148)

On that view, the reputed uncritical realism of working mathematicians
does not in general limit their freedom, for it is no longer reserved for in-
tuitively appealing structures like the natural numbers or Euclidean space.
One internally consistent concept or mathematical theory is no more true
or real than another. Hence Cantor wrote that if a proposed object satis-
fies his above conditions, “mathematics can and must regard it as existent
and real” (ibid.). To be sure, many mathematicians are concerned not only
with consistency but with the legitimacy of the objects they introduce, in
some broader sense that may depend on utility, intuition, elegance, and so
on. Such practical and aesthetic concerns may even provide some evidence
of consistency, which itself is usually quite difficult to prove, but they are
not the same thing as consistency, much less reality or truth. For the liber-
tarian, there is no question of the truth for a definition or axiom, for such
things make no claim of fact. They only stipulate linguistic conventions and
determine a domain of discourse.

As evidence that this has become a popular view among mathemati-
cians, I would cite the emergence of non-Euclidean geometries, the trend
in function theory from more to less restricted concepts of function (Jour-
dain;9 Maddy10,11) and the ascendance of the big-tent notion of set that
Maddy calls Combinatorialism (op cit.), the latter two of which Cantor
himself played important parts in. But if the reader is unconvinced, no
matter; nothing I have to say here depends on it. I mention this libertar-
ianism only to illustrate the kind of approach I have in mind, and as a
significant element in Cantor’s views, which we will discuss at length. If
libertarianism and the related MCA do not reflect the views and practices
of most mathematicians, I would urge them to reconsider. We should study
mathematical practice to determine what works and improve our under-
standing of mathematics. We should not regard the prevailing practice as
sacred.

I believe that several philosophical problems have already been solved
by means approximating the MCA, but rarely deliberately. Those who have
solved philosophical problems by articulating new concepts have typically
thought that they were discovering deep facts, not stipulating definitions.
Still, in several cases, a problem was in fact solved by articulating con-
cepts that addressed concerns more specific than the initial question. One
example was the problem of the world systems, ultimately put to bed by
Newton’s refinement of the concept of motion and his successful theory of
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gravitation.c Another lies in recent extensions of decidability to the continu-
ous context (Myrvold,14 Parker15–17). A more overtly metaphysical example
that quite clearly employs the MCA is Parfit’s work on personal identity
(Parfit18,19). I hope to discuss these and other examples elsewhere. The
one I will consider here is Cantor’s extension of the concept of number to
the transfinite, and the resolution this supplies for “Galileo’s Paradox”d

(Galileo20), namely that the square numbers seem to be at once fewer than
and equal to the positive integers.e

There, too, the MCA was not applied deliberately. The historical figures
discussed below — Galileo, Bolzano, and Cantor — did not see themselves
as altogether freely stipulating useful new conventions, but either as draw-
ing conclusions about the relative size of infinite collections, or, in Can-
tor’s case, as extending the concept of numerosityf in a constrained way.
Nonetheless, key elements of the MCA are reflected in some of their re-
marks and arguments. I will argue in light of their writings that, whatever
those authors may have thought, questions of transfinite numerosity were
in certain senses indeterminate, and Cantor’s extensions of numerosity were
stipulated more freely than some of his remarks would suggest. His stipu-
lations — in particular the notion of power — not only served to resolve
Galileo’s Paradox (which Galileo and Bolzano had also done, in different
ways), but at least partially solved the broader philosophical problem of
transfinite numerosity insofar as it helped to address major background
concerns. The main evidence that the MCA can work, then, is that it has
worked. (Note that I do not claim that the MCA is part of standard math-
ematical practice, only that it, or something quite close to it, has been

c DiSalle12,13 reads Newton’s Scholium to the Definitions in the Principia as giving a

definition (presumably stipulative) of absolute space and absolute motion. This would
fit wonderfully with my methodology, but it does not seem to fit Newton’s text. New-

ton seems rather to have made metaphysical claims about absolute space and motion.

Still, such claims performed the function of giving those notions empirical content and
rendering the Copernican question determinate.
d The paradox far pre-dates Galileo; see footnote a, section 3. I use the word ‘paradox’

throughout in the sense of a contradiction engendered by otherwise plausible supposi-
tions. (Assuming the law of non-contradiction, I do not see what else a paradox could
be.)
e Cantor himself paid little attention to that paradox, but he did present a version of it

(with the square numbers replaced by the even numbers), not as a paradox but merely

an illustration of a property of powers (Cantor,21 pp. 242–3). He also alluded to the
some phenomenon in a couple of other places, as we will see.
f Throughout this essay I use ‘numerosity’ to denote the general notion of cardinal num-

ber, i.e., number-of-elements, without presupposing Cantor’s analysis of that concept.
Cantor’s “cardinal number” will be called power, as he initially called it.
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successfully applied to some philosophical problems, in mathematics and
elsewhere.)

If indeed the MCA has sometimes been successful in the realm of math-
ematics, there is a further question as to whether it can be (or as I suggest,
already has been) useful in more general metaphysics. Of course, the prob-
lem of the infinite is traditional metaphysics par excellence. Nonetheless, I
will not argue here for the broader applicability of the MCA. I have men-
tioned some applications that I wish to discuss elsewhere, and I hope to
apply it to others as well. The broad success of the method can then be
evaluated in terms of those applications. Here let us bracket that question
and focus on mathematics.

In section 2, I further articulate and contextualize the method. I de-
scribe a roughly Wittgenstinian picture of concepts and Cantor’s related
notion of concept splitting. I then state a näıve version of the method,
raise some possible objections, and finally mention a modified method that
avoids most of the difficulties. Section 3 reviews Galileo’s Paradox and his
motivations for presenting it. There I argue that, in concluding that the
concept of relative size cannot be applied to the infinite, he was in a cer-
tain sense right, and Cantor, in claiming that there is no contradiction in
cases like Galileo’s Paradox, was wrong.g In section 4, I review Bolzano’s
position, that proper subsets are always smaller and bijection is not suffi-
cient for equinumerosity. I argue from Duggan’s22 order extension theorem
that Bolzano was not simply mistaken; the relation of proper subset can
be extended to a general concept of number quite different from Cantor’s.
Section 5 evaluates Cantor’s methods, his own perspective on his work, and
the success of his theory in addressing some major concerns common to all
three of our historical figures. Section 6 briefly criticizes Gödel’s arguments
for absolutism about the concept of cardinal number and touches on some
more recent debates about realism in mathematics. Section 7 concludes
with brief summary remarks.

2. The method

The approach to philosophical problems considered here emerges from a cer-
tain picture of concepts and of how philosophical problems arise, a picture
derived from Wittgenstein, Waismann, and to some extent Kant. (Kant23

g This is not an attack on Cantor’s theory. The point is just that his theory required a
conceptual innovation in order to escape Galileo’s Paradox (and it was not the only such

innovation possible).
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suggested that the antinomies arise from stretching our concepts beyond
their proper domains (Aii ff.), an idea anticipated by Galileo20 (p. 31,
quoted below).) Elements of this picture can even be found in Cantor’s
remarks, as we will see. Wittgenstein pointed out in the early sections of
the Investigations (1953) that many of our concepts do not have any tidy
set of necessary and sufficient conditions. He used the metaphor of a rope,
which derives its unity from its many overlapping fibers rather than a single
pervasive thread. Another apt metaphor would be that of a well worn rag.
Typically, our informal concepts are woven of many strands: various con-
ditions or properties, similarities between instances, and different approxi-
mately equivalent characterizations. They fray at the edges, where border-
line cases arise (“degree vagueness”, as Alston24 called it in 1964). They
also have holes: cases that do not lie on a fuzzy boundary but rather are
omitted from classification altogether (“combination-of-conditions vague-
ness”, ibid.).a They can be stretched to cover new cases, but, as Cantor
noticed, stretched too far they will tear (Fig. 1). When we extend a con-
cept beyond its usual domain, we may find that it comes apart, so that
some characteristic conditions are no longer mutually consistent, or various
formulations are no longer equivalent.

Cantor pointed out just such a case. He of course extended the concept
of number in two di-rections, that of Anzahlb (later called ordinal number)
and that of power (Mächtigkeit, later called cardinal number). For any finite

a Alston’s “degree vagueness” is the sorites type, consisting in “the lack of a precise cut-off

point along some dimension” (Alston,24 p. 87), while “combination-of-conditions vague-
ness” consists simply in the indeterminacy of the truth conditions for a term (pp. 87-

88). Waismann’s25 famous notion of open texture (1945) is related. Originally called

Porosität — literally, ‘porosity’ — it is, on one reading, just what I mean by holes, i.e.,
combination-of-conditions vagueness. But as Ackerman26 points out, Waismann further

distinguishes open texture as ineliminable; no definition can completely remove it. Our

rag picture is partly motivated by a suspicion that such ineliminable vagueness exists
and is even the rule, but that is inessential to the present considerations. Such vagueness

should also be distinguished from outright category errors. The emptiness of ‘What time

is it on the sun?’, for example, is not due to vagueness but to a definite inapplicability.
Nonetheless, it seems we could modify the concept of time-of-day to cover that case.
b Cantor also described order type (a generalization of Anzahl) as the natural exten-

sion of the concept of number (Cantor,27 p. 117). There is some disagreement about
the sense of ‘Anzahl ’ in Cantor’s hand. Ordinarily this word is translated as ‘number’,

‘cardinal number’, or ‘number of elements’, contradicting Cantor’s later designation of

his Anzahlen as the ordinal numbers. Tait on the other hand, reads Anzahl as ‘counting
number’ (Tait28), and elsewhere (Tait29) treats this as a synonym for ‘ordinal’. Cantor

did refer to an Anzahl as the result of counting (Cantor,7 p. 75), but note that this is
consistent with regarding it as a measure of numerosity (relative to an ordering). To
avoid any anachronism or prejudice, I will simply use ‘Anzahl ’.
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Fig. 1. A concept that has been stretched too far

set, Cantor observed, Anzahl and power coincide and determine each other,
but not so for the infinite; two infinite sets can have the same power but
different Anzahlen. Hence, as Cantor put it, “the whole concept of number
. . . in a certain sense splits up into two concepts when we ascend to the
infinite” (Cantor,7 p. 78, Cantor’s emphasis). In fact, it splits into more
concepts than that, for other notions of trans-finite number are possible, as
I will explain in section 4. (Besides those discussed here, another alternative
notion is given in Buzaglo.30)

When concepts split, we may be puzzled as to what we really had in
mind in the first place. Which criteria truly characterize the original notion?
But this is often a misguided question. The original appeal of the concept, in
its established domain of application, may have been due to the concurrence
of several conditions or characterizations. For example, part of the value of
ordinal number, in the sense of ‘position in a sequence’,c is that for finite sets
it coincides with cardinal number or numerosity. This after all is what makes
it possible to count; we correlate finite numbers with the elements of the set
being counted, and the last position we reach in the sequence of numbers
indicates the numerosity of the set. Thus, both cardinal number and ordinal,

c Cantor’s “ordinal numbers” are not merely positions in a sequence. They are ordered
sets of “units” that rep-resent the “order type”, in effect the structure, of a well-ordered

set (Cantor27). They are not the grammarian’s ordinals.
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and the fact that they concur, and as well the condition that proper subsets
are always smaller — all of these and more are what truly characterize the
original concept of number. When such concurrent conditions diverge, there
may be no uniquely right way to extend the concept, and hence a question
that stretches a concept beyond its usual domain may have no uniquely
correct answer. To obtain answers, we have to refine or modify the concepts
involved.

So far we have made free use of the notion of “the concept of X”, but
this requires clarification on a number of fronts. In general we will use ‘con-
cept’ to denote some disjunction of conditions. Like Frege, we have in mind
a logical object, not a psychological one. But to speak of the concept of
number, for example, leaves open the question of which conditions count.
They might be those associated with the word ‘number’ by everyone in
some community, or by the “competent” speakers of a language (which re-
quires further clarification), or by a particular individual. They may be the
conditions regarded as constituting the meaning of ‘number’, or they may
include all commonly held beliefs about number. Or, the concept of number
might be something more objective, a somehow distinguished set of condi-
tions that we may not even be aware of. These distinctions will be helpful
in understanding the views of our historical figures. Like typical concepts,
the MCA can be refined in various ways. One näıve version is as follows:

The Näıve Method of Motivational Analysis (NMMA)

(1) Establish that the question at hand, as stated, has no uniquely deter-
mined answer.

(2) Identify background motivations for the question, either practical or
theoretical.

(3) Refine or extend the concepts involved in the question so that under
the amended concepts, the question does have a determinate answer
and is relevant to the background motivations.

Some clarifications are in order.
There are different senses in which a question can have no unique an-

swer. Olson31 suggests that even vague questions have definite answers, for
if a case is vague, then the assertion of vagueness is itself the uniquely cor-
rect answer. But if we ask, as in our example below, ‘Is A greater than
B’, then ‘The question is vague’ is not in the normal sense an answer to
the question, for the question presupposes an answer of ‘yes’ or ‘no’. The
assertion of vagueness is just a way of denying that there is a uniquely
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correct answer. Other responses, such as ‘Those terms do not apply’, and
‘Only to degree x’, are quite different from the former. They do not assert
semantic indeterminacy, but a category error; they imply an established
usage that definitely rules out a simple yes-or-no answer. Such differences
impinge on the nature of a conceptual amendment, for if the question is
genuinely indeterminate, there is room to refine or extend concepts without
transgressing established limits on usage, but not if the question commits
a definite category error. Still, even if a particular application of a concept
or word is definitively ruled out, we may be to extend its domain nonethe-
less, changing its content. (I will explain shortly why this is not obviously
true.) The main purpose of step (1), besides removing the temptation to
keep looking for straightforward answers (e.g., yes or no), is to prevent
us revising concepts that are already doing good work (though sometimes
non-cumulative revisions are necessary). But there does not appear to be
much danger in extending a concept beyond previously imposed limitations
of scope, however definite, so long as logical consistency is maintained.

A question that arises about step (2) is, whose motivations should we
consider?d The method is intended to serve those who apply it, so in using
it one should consider one’s own motives. But we can choose our motives,
and one might choose to address someone else’s concerns. So in general,
the goals considered might be anyone’s or even no one’s, but the success
of a conceptual innovation or refinement — the question of whether it con-
stitutes a solution in the sense I have given — is then relativized to those
goals. To address the historical question of whether the method was suc-
cessfully applied to a particular problem, we merely ask whether anyone’s
motives were considered, and whether the sharpened question addressed
those motives. It matters little, for that purpose, whose motives they were,
but then the resulting answer is only a solution relative to those motives.
In the present case, we will see that all three of our historical figures had
related motives that were indeed addressed by Cantor’s solution.

When we can apply the NMMA, we really ought to. The steps them-
selves imply that the method will succeed in a way that addresses what
is important to us, as long as the steps can be carried out, and step (1)
protects us from doing damage to other useful concepts and theories. But
there are several reasons to worry whether the method can be executed.
The presupposition that we can determine whether a given question has a
unique answer is challenged by Quine’s32 attack on the analytic/synthetic

d Thanks to an anonymous referee for raising this issue.
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distinction (1951), externalist semantics (Kripke;3,4 Putnam5,6), and the
mere fact that analytic philosophers have struggled a hundred years or
more to discern meanings and meaningfulness, with limited success. The
threat from externalism is that we might not have epistemic access to the
meaning or reference of our own expressions. If water denoted H2O long
before hydrogen and oxygen were even discovered, as Kripke and Putnam
claim, then how can we be sure what our own words denote, and hence
whether a given question is really empty or not? The NMMA also pre-
supposes the apparent truism that we are masters of our own language —
that we can revise our concepts to make our expressions mean whatever we
want. This too is challenged by a form of externalism, namely Lewis’s no-
tion of a reference magnet, something that draws reference to it in virtue of
its natural “eligibility” (Lewis;33,34 Hodes;35 Sider36,37). How strong after
all are these magnets, and can we override them?

A further worry is that we might not be able to perform step (2), to
identify motivations more specific than the initial question. In fact, it is
characteristic of philosophy and pure science that the main goal is ex-
tremely general: to understand. In the spirit of pure investigation we often
pose puzzles without knowing exactly what we are looking for or having
any specific purpose in mind. Wittgenstein provides an apt (and peculiarly
bawdy) illustration: many problems are “like the problem set by the king
in the fairy tale who told the princess to come neither naked nor dressed,
and she came wearing fishnet . . . He didn’t really know what he wanted her
to do, but when she came thus he was forced to accept it” (from a lecture
quoted in Ambrose38).e Moreover, even if there are distinct background
motivations, it may be very difficult to discern them until after a solution
is given. Otherwise there would not be much of a philosophical problem.

Supposing we can identify motivations, the final step is to construct
concepts that will make our question determinate and relevant. In some
cases this may be easy, but in others, it may require superhuman foresight,
and this likely describes Cantor’s case. Among the background motivations
for his theory were desires to understand the structure of continuous spaces
and other infinite point sets, the representability and integrability of func-
tions, and the relations between numerosity and geometric magnitude (e.g.,
length or volume).f To foresee that the concept of power would be so useful

e I do not, like Wittgenstein, think this characterizes all mathematical problems, but

many philosophical ones.
f As we will discuss, Ferreirós39 argues that Cantor’s dominant motivations lay not in

mainstream mathe-matical concerns like function theory but in metaphysics and natural
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to those ends would have required genius beyond even Cantor’s, and as we
will see, Cantor only recognized the great importance of the concept, and
adopted it as a notion of number, gradually, as applications occurred and
a rich theory developed.

A final grave worry is that the method does not accurately describe the
history of the example under consideration: Galileo’s Paradox and its reso-
lution. Indeed, for the most part it does not fit the views of the participants.
But I will argue that in fact, extensions of the concept of numerosity were
freely stipulated; that Cantor developed his concepts of nu-merosity grad-
ually, in light of motivations, applications, and results; that he had certain
motivations in common with Galileo and Bolzano; and that his concepts of
numerosity proved particularly pertinent to those motivations.

Some of the above difficulties can be avoided by restricting our attention
to matters of logical consequence rather than truth. Given a particular
set of concepts, expressed as a set of propositions, i.e., a theory, we may
well be able to determine whether or not an answer to a given question
follows from that theory, along with other, uncontroversially determinate
propositionsg and the standard laws of logic (or some other set of laws if
you like). We need not distinguish between definitions in the theory and
factual hypotheses; just throw them all in. Whether or not there is a genuine
analytic/synthetic distinction, the determinacy of the answer to a question
relative to a given theory does not depend on it. We need only remem-ber
that such determinacy or indeterminacy is then relative to a theory (and
the laws of logic employed, if those are not in fact immutable). Furthermore,
reference no longer enters into the matter. Even if we cannot tell whether
reference determines an answer to our question, we may still be able to
establish logical independence. We need only find two models of the theory
which give different answers to the question.

We could generalize our method further and avoid even more of the
difficulties. Given a seemingly unanswerable question, we might proceed
roughly as follows:

philosophy. However, he certainly had these more specific mathematical goals as well,

and some were stimulated by his broader motivations.
g We may simply stipulate a set of propositions assumed to have determinate truth

values. For the logical positivists, these were observations or sense data; for Newton’s
problem of giving empirical meaning to absolute motion, they would have been the

propositions of relative position and motion; here they include the relations of relative

size among finite sets, and the relations of proper subset-hood and 1-1 correspondence
among infinite sets.
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The Generalized Method of Theory Revison (GMTR)h

(1) Propose a theory.
(2) Attempt to deduce an answer to the question.
(3) Evaluate the fruits of the theory (especially the motivations that it

serves).
(4) As with shampoo, repeat as necessary.

Here we omit the step of showing that the question has no determinate
answer, for even if it does, we can, if we wish, just propose a new theory that
better serves our motivations. We also avoid the problem of identifying our
background motivations and engineering appropriate concepts in advance.
We can just as well propose a theory first and then examine the interests
that it serves. Note that the purpose of step (3), ‘Evaluate the fruits’, is
not to judge the legitimacy of a theory or conceptual innovation, much less
its truth or reality. In the context of mathematics, that would contradict
the libertatianism I have advocated above: the claim that one logically
consistent mathematical concept is no more real or true than another. But
we are concerned here with developing concepts or theories that serve our
motives. The point of step (3) is to determine whether the problem has
been solved in that sense.

The question of whether we can override reference magnets is still trou-
bling. We may propose a theory that answers our initially mysterious ques-
tion, but reference magnetism might imply that the resulting theory is not
in fact about its intended subject, and it may con-sequently be false even
if it is true of its intended subject. However, it is hard to see how such
considerations would bear on our understanding. Say for example we want
to have a theory about a clear liquid with molecular structure XYZ. We
construct a theory of XYZ and deduce lots of enlightening consequences.
But suppose that, despite our intentions, the theory is really about H2O,
because H2O is a very strong reference magnet, and suppose our the-ory
is false with regard to H2O. What does it matter? The consequences we
have deduced are still true of their intended referent, as desired. If some-
how they are not true simpliciter, that would seem, in this case, to be an
irrelevant technicality. How can reference matter here if it plays no role in

h Of course, this is just the standard hypothetico-deductive method of empirical science,
with the usual step of testing predictions radically generalized to “Evaluate the fruits”,
but it is meant to apply as well to mathematical and philosophical theories, in order to

evaluate, not their truth, but their interest and usefulness.
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our understanding or our use of language?i

In any case, the GMTR fits more easily than the NMMA with historical
examples, including the one discussed below. Cantor did not argue that
the question posed by Galileo’s Paradox was initially empty, nor regard
himself as freely stipulating the nature and existence of transfinite numbers,
but he certainly did propose a new theory that provided a solution to
the paradox, derive consequences, and evaluate the fruits. Of course, this
is not saying much. The GMTR is so loose that nearly any theoretical
development will instantiate it. The important point is that mysterious
philosophical questions can thus be made determinate and relevant to our
concerns. By augmenting or revising our language or theory, we can obtain
answers that bear on our broader purposes.j

However, the GMTR does not so much resolve our difficulties as dodge
them, and by abandoning step (1) of the NMMA, it threatens to undo with
willy-nilly revisions as much progress as it achieves. In what follows I will
leave the GMTR aside and try to exhibit the extent to which the resolution
of Galileo’s Paradox can be assimilated to the NMMA or something close to
it. But I will focus on logical implication, ignoring worries about externalism
and reference magnets until we reach the discussion of Gödel’s realism. After
all, if, as I argue, something close to the NMMA has in fact worked, there
is little to fear from the objections I have mentioned.

3. Galileo

Galileo points out in his last dialogue (Galileo,20 p. 32) that the square
numbers (1, 4, 9, 16, . . . ) are clearly fewer than the “numbers” (the posi-
tive integers 1, 2, 3, 4, . . . ), for the latter include the squares as well as many

i I have ignored here serious questions about just what a theory of reference is supposed
to assert — whether it makes genuine claims of fact or rather proposes a convention

of interpretation, whether it is supposed to be completely adequate or a limited toy

model, etc. (One might argue that we can diagonalize our way out of any given theory
of reference just by stipulating that in certain cases reference will work differently.)
j There are further questions as to which propositions are essential to a theory, and

which ones are not only determined by the theory but meaningful in some further sense.
We might, for example, add to Newton’s theory of gravitation the statement ‘Discon-
tent is orange’, making that sentence part of a useful theory, but in a clearly ad hoc

and unhelpful way. We would like to have some way of distinguishing such inessential

appendages to a theory from its integral, functional elements, but that is essentially the
problem that hobbled logical positivism (Hempel40) even before Quine’s “Two Dogmas”

(1951).32 Perhaps the “evaluate” and “repeat” steps of the GMTR can help, but I make
no attempt to resolve the problem here. I only make the modest claim that a statement
can sometimes gain determinacy and relevance in virtue of a new concept or theory.
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more. Yet, he goes on to show, these two collections are equal, since they
can be placed in a one-to-one correspondence; just match each square with
its root. So the two collections are at once equal and unequal.a Galileo’s
protagonist Salviati concludes that infinities “transcend our finite under-
standing” (Galileo,20 p. 26), and “the attributes ‘equal’, ‘greater’, and ‘less’,
are not applicable to infinite, but only to finite, quantities” (p. 32).b

Some may regard this as simply a näıve mistake, though excusably so,
given its date. Not all readers will agree, but often it is taken for granted
that Cantorian set theory resolves the paradox in the only way possible.
As we now know, some will say, two sets are equal in numerosity if and
only if they can be placed in one-to-one correspondence. The fact that
the set of integers is thus equal to a proper subset of itself is just an odd
phenomenon characteristic of infinite sets, which any suitably modern and
open-minded individual will accept once accustomed to it. Gödel47 held
this view, and Cantor himself said, “There is no contradiction when, as
often happens with infinite aggregates, two aggregates of which one is a
part of the other have the same cardinal number”, and further, “I regard
the non-recognition of this fact as the principal obstacle to the introduction
of transfinite numbers” (quoted in Jourdain,48 p. 75; my emphasis).

But in a clear sense, Salviati was right and Cantor was wrong.
The concept of relative size with which Salviati and his author were

equipped, taken in whole, cannot be applied consistently to infinite sets.
For Galileo, these concepts involved at least two principles:

Euclid’s Principle (Common Notion 5): The whole is greater than the
part (i.e., strictly greater than any proper part).

Hume’s Principle: Two collections are equal in numerosity if and only

a There is a nearly continuous family of similar paradoxes going back to the distantly

related Wheel Paradox from around the 4th century BCE (Sambursky;41 Murdoch;42

Gardies;43 Duhem;44 Thomas;45 Rabinovitch46). Notably, Duns Scotus, around 1302,
compared the odd and the even numbers to the whole numbers and even anticipated

Cantor in rejecting what we will call Euclid’s Principle (Gardies,43 p. 45-6). Gregory
of Rimini, around 1346, adopted an approach surprisingly close to the MCA: he distin-
guished two senses of ‘larger’, the “improper” one corresponding to Euclid’s Principle,

and the “proper” corresponding to what we will call Hume’s Principle (Duhem,44 p. 111–

2). However, he offered this more as a conceptual analysis than an innovation, and still
suggested by his ‘proper/improper’ terminology that the Humean notion of larger was

the uniquely correct one.
b According to Duhem44 (p. 89 ff.), this was also held by Duns Scotus and several
subsequent medievals.
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if their members can be put in one-to-one correspondence.c

In daily life, the collections we reckon about are mostly finite (if con-
ceived as collections — excluding regions of space and the like), and like
Anzahl and power, the above principles always agree in such cases. For those
not studied in these matters, the two princi-ples are not distinguished at
all; they are integral parts of a single concept, which we divide only in
post hoc “analysis”. Galileo’s own inability to separate the two principles
is evidence for the unity of this pre-theoretic concept. Though he does
implicitly suggest the conflict between them, and thus their distinctness,
he never considers the possibility of a notion of size under which one of
the principles fails. Both principles appear to have been firmly entrenched
in his conception of numerosity, and experience with students shows that
the same is true for many today. Such a concept of numerosity, as Galileo
showed, cannot be applied to the infinite.

Cantor was wrong in that there is a contradiction when an aggregate
and a proper part of it have the same cardinal number, namely the con-
tradiction between the above two principles. Cantor only avoided this by
abandoning the first. Of course, he might have meant that there is no con-
tradiction under his technical concept of cardinality, but then to call this
cardinal number, in the general sense of numerosity, just ignores the fact
that Euclid’s Principle was so deeply ingrained in our intuitive notion of (or
entrenched beliefs about) numerosity. Furthermore, such a reading would
make his next remark about “the non-recognition of this fact” very strange.
How could anyone have recognized a fact about his technical concept before
he introduced it?

The dogmatic view that Cantor’s analysis was right and those of Galileo
and Bolzano (the latter discussed below) mistaken is fairly common today,

c Galileo did not spell out these principles, let alone call them by these names, but

they are clearly implicit in his statement of the paradox. In recent debates on neo-
logicism (e.g., Hale and Wright,49 Demopoulos50), ‘Hume’s Principle’ usually refers to

Frege’s implicit definition of the numbers, stating that two classes have the same number

if and only if they can be put in 1-1 correspondence (Frege,51 p. 73). What Hume
actually wrote is, “When two numbers are so combin’d as that one has always an unite
answering to every unite of the other, we pronounce them equal” (Hume,? Treatise

I, iii, I). ‘Number’ here is taken to mean ‘set’ or something like it (Tait,29 p. 241;
Demopoulos,50 p. 109), so Hume is merely defining equality, not introducing numbers

as objects. Tait29 objects to the phrase ‘Hume’s Principle’ in application to infinite sets,

since Hume himself disavowed the infinite, but for us, the question of whether, and how
univocally, to extend Hume’s finitary principle to the infinite is at issue.
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perhaps due in part to Gödel’s47 arguments (also discussed below).d The
MCA suggests a more pluralistic resolution of the paradox (one that some
readers may regard as obvious and standard, but others will disagree).
There are at least two ways to characterize the relative size of sets, namely
Euclid’s Principle and Hume’s. Euclid’s defines what we might call the
‘greater’ of inclusion: one set is greaterinc than another if it properly in-
cludes the other. (This obviously has very limited application, but as we
will see, it can be extended.) Hume’s suggests the ‘greater’ of power : one
set is greaterpow than another if there is a bijection between latter and a
subset of the former, but not between the former and a subset of the latter.
Only greaterpow has generated a rich theory of relative size for arbitrary
sets, and only greaterpow concerns the intrinsic size of sets as sets, inde-
pendent of ordering or any other property imposed on a set or derived from
the nature of its elements. Nonetheless, both notions are in some degree
legitimate heirs to the pre-theoretic notion of numerosity, in virtue of the
entrenchment and seemingly analytic status of our two principles. Cantor’s
notion of cardinality is not the uniquely right concept, but a particularly
elegant and useful one. This pluralistic resolution harmonizes with Cantor’s
own notion of concept splitting and his professed conceptual libertarianism,
yet it is clear from the above quotes, and other considerations below, that
this is not how Cantor himself always saw the matter.

I have said Galileo was right that his concept of number did not apply
to the infinite, but this does not contradict the conceptual pluralism I am
endorsing. Galileo was right about his concept, understood in terms of
his tacit commitment to both principles, i.e., his disinclination to consider
rejecting one. Further, this was apparently the conception of many, for
several before him drew the same conclusion, that ‘more’ and so on do
not apply to the infinite, and few suggested the possibility of a ‘more’
that violates one of the principles (Duhem;44 cf. notes a, b, section 3).
Yet, understood in terms of common, explicit conventions, “the concept”
of numerosity was unsettled on the question of whether both principles must
be upheld simultaneously in the infinite case. The matter was disputed. (See
note a, section 3.)

Galileo came rather close to step (1) of the NMMA. He concluded from
his paradox that the notion of numerosity simply does not apply to the
infinite. It is not that all infinite sets are equal, as he makes clear in the

d Frege and Russell were also committed to power as the essential concept of numerosity
(Frege,51 p. 73, p. 98; Russell,52 chapter IX).
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above quote and elsewhere (Galileo,20 p. 33). The concept of relative size
does not apply at all. One might take this to mean that the question of
whether the squares are fewer than the positive integers or not has no
determinate answer, but this is not quite right. Galileo gave an answer:
“[N]either is the number of squares less than the totality of numbers, nor
the latter greater than the former” (p. 32). So for him, the answer to all
such questions is ‘No’ — or perhaps, if we do not read the last quote too
closely, ‘We cannot speak of such relations among infinities’ (p. 31). In any
case, a ‘yes’ is strictly ruled out. If we ask what was the answer according
to widely acknowledged, explicit conventions, then there is room for a ‘yes’
or a ‘no’, but Galileo takes the paradox (derived from his tacit principles)
to establish a more definite answer.

We can reasonably say that step (2) is present in Galileo’s discussion,
for he makes the concerns behind his paradox quite clear. The section of
the Dialogues in which it appears proposes a notoriously speculative and
unsuccessful explanation for the cohesion of bodies: that a solid contains
infinitely many miniscule vacua, and it is nature’s resistance to these vacua
that somehow accounts for the rather strong cohesion of solids.e (He de-
scribes an ingenious experiment showing that the force engendered by a
single macroscopic vacuum is not enough.) This account presupposes that
a solid is composed of infinitely many indivisible parts. But to that there
is an old objection (Murdoch42), which Simplicio, the Aristotelian antag-
onist in the dialogue, puts in terms of lines rather than solids. If a line is
composed of infinitely many parts, then a longer line has an even greater
infinity of parts, which seems absurd to the pre-Cantorian. “This assigning
to an infinite quantity a value greater than infinity”, Simplicio says, “is
quite beyond my comprehension” (Galileo,20 p. 31).

Galileo has Salviati reply as follows (anticipating Kant’s idea that anti-
nomies arise from stretching our concepts beyond their proper domains):

This is one of the difficulties which arise when we attempt, with our
finite minds, to discuss the infinite, assigning to it those properties
which we give to the finite and limited; but this I think is wrong,
for we cannot speak of infinite quantities as being the one greater
or less than or equal to another. To prove this I have in mind an
argument. . . (ibid.)

e The existence of the infinitely many vacua is argued from an ancient relative of the
paradox itself, namely the Wheel Paradox of the pseudo-Aristotelian Mechanica.
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And here the paradox appears. Hence there is little doubt about its pur-
pose: to show that relative size does not apply to infinite collections, and
thus to defeat Simplicio’s objection to the particulate analysis of continuous
bodies.f More generally, in seeking to escape the line paradox, Galileo was
concerned with the puzzling relations between numerosity and geometric
magnitude. Thus, what he required from a notion of transfinite numeros-
ity was to illuminate those relations, to determine whether a continuum
can coherently be decomposed into infinitely many indivisible parts, and
ultimately, to determine whether an infinity of point-vacua can somehow
account for the strong cohesion of bodies. As we will see, Bolzano and
Cantor too were much interested in the relations between numerosity and
magnitude, the nature and structure of continua, and even physical appli-
cations.

In effect, Galileo also executed step (3), but with limited success. By
declaring that the language of relative size does not apply to the infinite,
he was supporting one proposed refinement of the public concept of nu-
merosity. He does not appear to have regarded this as a stipulation; he
instead took it to be proved by the paradox, tacitly taking both Euclid’s
and Hume’s Principle for granted. Nonetheless, he asserted a clear bound-
ary where none was publicly established, and which he was therefore free
to impose without contradicting any established rules or theory. This did
at least partly determine an appropriate reponse to his implicit question
whether the squares are fewer than the wholes: either ‘No’ (for no such re-
lations hold among infinite sets) or, ‘That concept does not apply’. However,
the bearing of this result on his background motivations was limited. It did
imply a kind of degenerate analysis of the relations between magnitude and
numerosity, namely that infinite sets have no relations of greater and lesser
numerosity, regardless of the magnitudes of the wholes they compose. But

fOne may wonder how one paradox can refute another very similar one, but Galileo’s

Paradox accomplished this in two ways: First, it showed that the line paradox does not

arise from the continuous nature of lines, since Salviati’s version concerns the discrete
set of whole numbers. Denying the particulate analysis of continua does not resolve

the square number paradox, so a more general solution is needed, and Galileo offers
one. Secondly, the number paradox provided reason to think that Simplicio’s argument
was invalid. Salviati’s paradox involved two collections, the positive integers and the

squares, which very plausibly do exist and which do consist of infinitely many parts,

with much the same puzzling results as the line paradox. If we accept this much (though
one might not, instead denying any actual infinity), then an example of the same form,

such as the line paradox, cannot show that composition from infinitely many parts is
impossible. Neither of these points depends on Galileo’s particular way of resolving the
square number paradox.
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this is quite a crude and unenlightening analysis compared to Cantor’s, and
besides defusing Simplicio’s objection, Galileo’s solution of the paradox did
nothing to clarify the tenability of the analysis of continua into indivisibles,
nor the feasibility of Galileo’s hypothesis about vacua and cohesion. It was
at best a weak partial solution of the larger philosophical problem.

4. Bolzano

Bolzano53 boldly claimed that infinite sets differed in numerosity, and that
transfinite numerosity did not satisfy both Euclid’s Principle and Hume’s
(though again, see note a, section 3). He even recognized the divergence of
those principles as a necessary and sufficient condition for infinity, though
he did not, like Dedekind,54 adopt it as a definition. But unlike Cantor,
Bolzano saw Euclid’s Principle, not Hume’s, as indispensible to the no-
tion of quantity. Despite the existence of a bijection between two sets, he
claimed, they “can still stand in a relation of inequality in the sense that the
one is found to be a whole, and the other a part of that whole” (Bolzano,53

p. 98).a

a Berg55,56 seems to grant Bolzano deathbed absolution by claiming that Bolzano had

renounced his allegiance to Euclid’s Principle in his last days. He points out that, in a
letter to a pupil dated March 9, 1848, Bolzano retracts the conclusion that Sm infinitely

exceeds Sm+1 (see my next paragraph). “Hence”, writes Berg, “it seems that at the last

Bolzano confined the doctrine that the whole is greater than its parts to the finite case
and accepted [bijection] as a sufficient condition for the identity of powers of infinite

sets” (Berg,55 p. 177; repeated almost verbatim in Berg56). But Bolzano’s renunciation

(published in Bolzano57 is too obscure to establish that he accepted Hume’s Principle.
In fact, Bolzano continued to deny that principle in the Paradoxes, which he worked

on at least until September 30, 1848 (Steele58), more than six months after the cited
letter. (On the other hand, the quality of the posthumous editing of the Paradoxes has
been criticized; see Steele,58 pp. 54–5.) Furthermore, Bolzano’s Paradoxes does treat

a variation on Galileo’s Paradox in a manner that is apparently consistent with the
remarks of his letter (and using similar ‘Sm ’ notation), and yet connects it with lessons

learned from the failure of Hume’s Principle (Bolzano,53 p. 115; cf. pp. 100, 110, 114).

There Bolzano does not accept the mere existence of a bijection as sufficient for the
equinumerosity of infinite sets; only some connection in the “mode of specification or of

generation” is sufficient (p. 98). If one sequence is produced from another by squaring
each term, for example, then the two sequences have the same number of elements (partly
anticipating Gödel’s argument discussed below). For Bolzano, this does not contradict

Euclid’s Principle because he distinguishes between terms that have the same value,

so that the result of squaring the terms in the sequence 1, 2, 3, . . . is not a proper
subsequence of that sequence. Strange, vague, and problematic as these views are, we

have no proof that they cannot be developed into a consistent and interesting theory.
Berg’s attribution of a Cantorian view to Bolzano looks suspiciously like a symptom of
the Cantorian hegemony.
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This he argued from two paradoxes similar to Galileo’s, but involving
continuous sets. He showed first that the real numbers in the interval [0, 5]
can be matched with those in [0, 12] by means of the equation 5y = 12x.
Analogously, he exhibited a bijection between the points in a line segment ac
and an arbitrary proper segment ab, a version of Simplicio’s line paradox. In
an earlier work (Bolzano57), Bolzano considered a generalization of Galileo’s
square number paradox (without citing Galileo). To put it in modern terms,
he defined the sequences Sm = for each m ∈ N and argued that each Sm

contains infinitely many more terms than Sm +1.
Much like Galileo, Bolzano attributed the “air of paradox” (in the con-

tinuous examples at least) to the over-extension of notions from the finite
case. When a bijection between finite sets is possible, “then indeed are the
two finite sets always equal in respect of multiplicity. The illusion is there-
fore created that this ought to hold when the sets are no longer finite . . . ”
(ibid., p. 98). However, far from concluding that questions of size are vague
or indeterminate in the infinite case, or like Galileo, that the notion of size
does not apply — far then from initiating our näıve methodb — Bolzano
regarded it as proved by the so-called paradoxes that bijection does not
entail equinumerosity. For Bolzano, being a proper part constituted a no-
tion of ‘smaller’. At least twice (p. 95, p. 98) he remarked that an infinite
set can be greater than another “in the sense that” the two are related as
whole to part.c

Despite his own view of the matter, Bolzano was in fact free to choose
among Euclid’s principles. The very fact that he took the paradoxes to
refute Hume’s Principle in the infinite case is further evidence that before
Cantor, Euclid’s Principle was integral to tacit conceptions of number, and
Hume’s was not the uniquely essential principle of numerosity. Indeed, there
is a clear sense in which there are more whole numbers than perfect squares,
for ‘more’ often means ‘additional’. The whole numbers include the squares
and more, i.e., others. A notion of numerosity that does not reflect this
would seem to be missing something basic. Even in current mathematics,
one sometimes uses “small” in a Bolzanian sense. For example, a σ-algebra
is often defined as “the smallest” set with certain properties. What is meant
in that case is not the set of smallest power (for that does not even pick
out a unique set), but rather the unique set, with the specified properties,

b Bolzano did, however, attribute certain mistakes in calculating infinite sums to expres-

sions being “devoid of objective reference” (Bolzano,53 pp. 112–4).
c But notice also a hint of pluralism: “in the sense that” suggests the possibility of a

different sense.
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such that no proper subset has those properties. And even Gödel,47 in the
midst of arguing that Cantor’s concepts are forced on us, said that new
axioms can “increase the number of decidable propositions” (p. 520). But
the set of such propositions always has the power of the integers! What
Gödel meant by “increase the number” was just to expand the set of de-
cidable propositions to a proper superset of the former — a Bolzanian use
of ‘number’. The notion of proper inclusion on its own is not a very sat-
isfying notion of ‘greater’, for it leaves vastly manyd sets incomparable to
each other. However, it is not unreasonable to extend the finitary notion
of ‘greater’ to a merely partial ordering on the infinite sets. This would at
least seem to be an improvement on Galileo’s strict confinement of relative
size to the finite. Furthermore, it is possible to extend any partial ordering
to a strict weak ordering ‘<’ on the subsets of any well-ordered set, and
hence, given the Axiom of Choice, on the subsets of any set (Duggan22).
In a strict weak ordering, the incomparable sets form equivalence classes,
so we can regard any two incomparable sets as equal in “size”. We thus ob-
tain a total preorder ‘<’ that extends both the relation of ‘no greater than’
on finite sets and the subset relation ‘⊆’.e Hence we can define notions of
smaller, greater, and equal, as broadly as we like, while respecting Euclid’s
Principle (but abandoning Hume’s).

There are two worries about this argument: First, the relations defined
might not respect other intuitive principles of size, and may thus seem
undeserving of that name. For example, let us say a relation ‘<’ on sets is
monotonic if A < B if and only if A\B < B\A (a generalization of Euclid’s
Principle). Duggan’s powerful extension theorem (Duggan22) shows that for
a very broad class of properties, binary relations that have those properties
can be extended to totality while preserving the properties. As it happens,
monotonicity is not one of the properties covered by Duggan’s theorem
(since it is not “arc-receptive”), but this in itself does not rule out the
possibility that there are total monotonic extensions of the ‘less than’ and
proper subset relations, perhaps in virtue of some other provable extension
theorem.

If not, so be it. We already know that no extension of the notion of
size preserves every property of size that holds for finite sets. An extension

d Vastly many, that is, under Cantor’s notion of cardinality, and in any case, infinitely
many.
e We can also choose the extension to be compatible, meaning that if two sets in the old
domain (the finite sets) were not of equal size (i.e., if not both A < B and B < A), they

do not have equal size in the extended relation either (Duggan22).
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cannot preserve both Hume’s Principle and Euclid’s. As Cantor wrote, some
authors “begin by attributing to the numbers in question all the properties
of finite numbers, whereas the infinite numbers, if they are to be thinkable in
any form, must constitute quite a new kind of number” (Cantor,27 p. 74).f

If we wish to speak at all about different sizes of infinity, we must choose
the properties of size to preserve.

Secondly, we might worry, especially given Duggan’s appeal to the Ax-
iom of Choice, that total extensions of the subset relation would be quite ar-
bitrary and uninteresting. But given the power of Duggan’s theorem, there
may be many possible extensions, and perhaps some among them are espe-
cially interesting. In any case, being interesting is a separate concern from
being logically possible. I concede that Cantor’s notion of cardinal number
is probably the most interesting, elegant, intuitively appealing, and useful
extension of numerosity to the infinite. I mainly want to insist that such
virtues do not make it the uniquely correct notion of numerosity in the
sense of verisimilitude. Unless we presuppose a semantics in which ‘size’
automatically designates some particularly eligible property, of which we
might have true or false conceptions, the notion of verisimilitude does not
apply. So ignoring such semantic considerations, Bolzano was free to choose
without risk of being mistaken.

Bolzano did not make the motivations for his Paradoxes (Bolzano53)
explicit, but it is clear that some of them were shared with Galileo. As
Cantor7 noted (p. 78), the main purpose of the book was to defend the
actual infinite, including the constitution of continuous bodies out of point-
like atoms, against many apparent contradictions. Bolzano criticized various
leaps of logic that others had made, and he took particular interest in
divergent infinite sums as well as time. But like Galileo, he also grappled
with the curious relations between numerosity and geometric magnitude,
defended the analysis of space and matter into a continuum of points, and
even attempted to use this analysis to explain physical phenomena.

Bolzano distinguished the magnitude of a spatial extension from the nu-
merosity of the set of points of which it consists (Bolzano,53 pp. 134–5), and
then asserted various propositions about magnitude and numerosity, such
as that if two figures are perfectly similar, the numbers of their points stand
in the same ratio as their geometric magnitudes (p. 136). (He defended this
from an objection similar to Simplicio’s line paradox, and closer still to the

f Though Cantor continues anti-pluralistically, “the nature of this new kind of number
is dependent on the nature of things and is an object of investigation, but not of our

arbitrariness or our prejudice” (ibid.).
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Wheel Paradox, by repeating his rejection of Hume’s Principle (p. 137).)
Later in the book, he hypothesized that the whole of infinite space was
completely filled with substances, and yet various parts were filled with
different degrees of density (p. 161). To defend this, Bolzano urged that
“there is no sort of impossibility in one and the same (infinite) set of atoms
being distributed, now in a larger region without a single point standing
solitary there, now in a second and contracted region without a single point
requiring to absorb two atoms” (p. 162), and referred the reader to his ver-
sions of Galileo’s Paradox.g Thus, Bolzano was concerned with relations
between magnitude and numerosity, the particulate analysis of continua,
and physical applications.

Like Galileo, Bolzano took the paradoxes to prove something, but by
taking them to prove one thing rather than another, he imposed a concep-
tual refinement. No doubt he did so with an eye to some of the motivations
noted above. But like Galileo’s, his success was quite limited. He found
many applications for his rather vague conception of infinite numerosity in
the Paradoxes, but most seem to have been incoherent and fruitless.

5. Cantor

Cantor’s approach to the infinite seems to have been closer to the NMMA
than those of Galileo or Bolzano. Though Cantor did not explicitly claim
that questions of relative size for infinite sets lacked uniquely right answers,
he was somewhat pluralistic about concepts of transfinite number, and as I
will explain, this suggests that even for him, some questions about relative
numerosity were indeterminate until refined. Furthermore, he did, unlike
Galileo and Bolzano, regard himself as extending the concept of number,
and he did so under the influence of certain specific motives.

By 1887, Cantor clearly endorsed multiple notions of number, including
power and Anzahl (by then taking the additional names of cardinal and
ordinal number), as well as the more general notion of order type (Can-
tor59). It is often thought that power was always the primary notion of
number for Cantor (e.g., Ferreirós,60 p. 265, p. 270), who did make several
remarks about the basic, general, and intrinsic character of power, (Can-
tor,61 p. 150; Grattan-Guinness,62 p. 86). Ferreirós points to those remarks

g The point of referring to the paradoxes was apparently to show that a continuum of
atoms, with no gaps, could nonetheless be compressed into a smaller region, increasing its
density. But this seems incompatible with his assertion that the ratio between numbers

of elements equals the ratio between magnitudes.
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as well as the structure of Cantor’s “most mature work”, the Beiträge (Can-
tor27), in which the cardinals are introduced before the ordinals. But the
remarks in question leave some room for interpretation and are counter-
acted by others. In fact, it was Anzahl that Cantor first called the “number
of elements” of an infinite set,a in the Grundlagen, while power retained
its less suggestive moniker for some time.b Even in the Beiträge, to which
Ferreirós appeals, Cantor exalted the notion of order type. That concept, he
wrote, . . . embraces, in conjunction with the concept of ‘cardinal number’ or
‘power’ introduced in section 2, everything capable of being numbered that
is thinkable, and in this sense cannot be further generalized. It contains
nothing arbitrary, but is the natural extension of the concept of number.
(p. 117)

Power, then, was not unequivocally privileged, for Cantor. The best we
could say for it in light of this quote is that it was somehow “conjoined”,
to or within, the natural extension of number. The pluralism here, encom-
passing at least power and order type, is explicit.

Still, one might infer from Cantor’s “ordinal/cardinal” terminology that
power was his only concept of numerosity. He even wrote, “The ‘powers’
represent the unique and necessary generalization of the finite ‘cardinal
numbers”’ (Cantor,66 p. 922). But as we have just seen, it was the Anzahlen
that first took that position. In the Grundlagen, Cantor made it clear that
he regarded Anzahl as a notion of numerosity, relativized to an ordering:

a “In the case of infinite aggregates, on the other hand, absolutely nothing has so far

been said, either in my own papers or elsewhere, concerning a precisely defined number
of their elements [Anzahl der Elemente]” (Cantor,7 p. 71; Cantor,63 p. 167). But soon,

“Another great gain . . . is a new concept not previously in existence, the concept of the

number of elements [Anzahl der Elemente] of a well-ordered infinite manifold (Cantor,7

p. 71; Cantor,63 p. 168). However one translates ‘Anzahl ’ here, ‘Anzahl der Elemente’

strongly suggests a notion of numerosity rather than position in a series.
b His first use of ‘cardinal number’ in print appeared in 1887 (Cantor59). Jourdain48

quotes Cantor using it in a lecture of 1883, and a footnote from Cantor attributes the

relevant part of Cantor59 to a lecture of that year and a letter of 1884 (p. 387). Strangely,

though, Cantor did not to my knowledge use ‘cardinal’ in any publications or other let-
ters before 1887. Even in his review of Frege’s Grundlagen (Cantor64) and Cantor,65 he

used ‘ordinal number’ but not ‘cardinal’, and kept power distinctly separate from num-

ber; even though Frege had argued (using different words) that Cantor’s Anzahlen were
ordinal numbers and his powers were cardinals (Frege,51 p. 98). It seems plausible, then,

that Cantor only inserted the phrase ‘cardinal number’ into the later published form of
his lecture (and perhaps likewise for the 1885 letter published as part VIII of Cantor.59

Jourdain may have used ‘cardinal number’ anachronistically, as many authors do, believ-

ing that Cantor always thought of power as the fundamental notion of numerosity. If so,
the cardinal/ordinal terminology was probably spurred by Frege’s remarks and further
justified by Cantor’s development of cardinal arithmetic. (See note g, section 5.)
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[A] finite aggregate exhibits the same number of elements [Anzahl
von Elementen]c for every order of succession that can be given
to its elements; on the other hand, different numbers [Anzahlen]
will in general have to be attributed to aggregates consisting of
infinitely many elements, depending upon the order of succession
given to the elements. (Cantor,7 p. 72; Cantor,63 p. 168)

This was natural, given the way in which the Anzahlen emerged from
Cantor’s theory of point sets. As is well documented (Jourdain48), they
sprang from the indexes on his “derived sets” P (ν), where P’ = P (1) is the
set of limit points of a set P, and P (ν+1) = P (ν)′ (Cantor67). Cantor later
defined P (∞) as the intersection of all derived sets P (ν) for ??? a positive
integer (Cantor68). Intuitively, P (∞) was the result of taking the derivative
infinitely many times (once for every positive integer) and P (∞+???) the
result of taking it ??? more times. This helps explain how the Anzahlen
represented a kind of numerosity; they answered the question, “How many
times?”

Hence there was some pluralism in Cantor’s conception of numerosity.
Already in the Grundlagen, the claim that the original concept of number
splits in two implied that both power and Anzahl were in some degree
legitimate heirs to the title of ‘number’. Such pluralism suggests that even
for Cantor, certain questions about the relative size of infinite sets were
indeterminate prior to his refinements. Consider the ordered set (1, 4, 9,
16, . . . ; 2, 3, 5, 6 . . . ), i.e., the positive integers arranged so that the squares
come first. Is this ordered set bigger than its infinite initial segment (1, 4,
9, . . . )? With respect to Anzahl, yes: The former sequence has the ordinal
2ω, while the latter has ordinal ω. But with respect to power, no. Hence,
the question requires refinement. In fact, even the question of the Anzahl
alone may be indeterminate, for it depends on the ordering that we apply
to a set. In particular, Galileo’s question whether the squares are fewer than
the positive integers may be seen as indeterminate, even rejecting Euclid’s
Principle, provided that ‘fewer’ can be understood in terms of Anzahl and
one does not take the natural orderings for granted. Thus, Cantor’s own
ideas implied that some questions of relative size, and by a stretch even
Galileo’s, were insufficiently precise to determine an answer.

However, Cantor’s pluralism and libertarianism did not extend to Eu-
clid’s Principle. We have already noted his claim that there is simply no con-
tradiction when a set has the same cardinality as a proper subset. As well,

c Again, this expression strongly suggest numerosity.
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the Beiträge contained a venomous assault on Veronese’s definition of equal-
ity, which attempted a compromise between Euclid’s Principle and Cantor’s
Anzahlen: “Numbers whose units correspond to one another uniquely and
in the same order and of which the one is neither a part of the other nor
equal to a part of the other are equal” (Cantor,27 p. 117–8).d Cantor crit-
icized the circularity of this definition (ibid.), but according to Dauben70

(p. 234) he also objected to its arbitrariness. “He complained to Peano that
Veronese believed the definition of equality, both for numbers and for or-
der types, was entirely at the mercy of one’s choice, which was a heretical
suggestion from Cantor’s point of view . . . ” (ibid.). On Dauben’s reading,
Cantor was much more the dogmatic essentialist than the Grundlagen’s
libertarian declarations would suggest.

Hence, Cantor might appear to have been inconsistent on the subject
of mathematical freedom. In the Grundlagen he defended the actual infi-
nite both by waxing grandiloquent on the freedom of mathematics and by
claiming that his theory was forced on him (Cantor,7 p. 75). But perhaps
he can be seen as occupying a coherent middle ground: He was forced to
recognize certain extensions of the notion of number, he might have said,
but not to forsake all others. The forcing he refers to is best understood in
terms of his derived point sets. Taking repeated derivatives and infinitary
unions, Cantor obtained sets with larger and larger transfinite indices, a
process he called “necessary” and “free from any arbitrariness” (Cantor,68

p. 148). Without these indices, many of his future results on point sets
would have been unattainable, including the Cantor-Bendixson Theorem
(Cantor71) and the important theorem that any set with a countable αth

derivative, for any Anzahl α, has zero outer content (the lower limit of the
total length of any set of covering intervals), and hence, in modern terms,
zero measure (Cantor72). Considered independently of point sets, the An-
zahlen enabled Cantor to establish an infinite hierarchy of infinite powers,
having only established two infinite powers before, and to show that there
is a unique second infinite power, seemingly a step toward Cantor’s goal
of proving the Continuum Hypothesis. Thus Cantor was forced to recog-
nize the Anzahlen by their apparent naturalness and his need to employ
them, but none of this required him to dismiss other notions of transfinite
number. After all, he later incorporated power and order type as additional

d Veronese’s work is now regarded as an important forerunner to that of Robinson,
Conway, and Ehrlich, the latter two of which generalize Cantor’s transfinite numbers

(Ehrlich69).
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concepts of number (Cantor27,59).e

Moreover, Cantor called Anzahl and order type extensions of the con-
cept of number (Cantor7,27), not mere descriptions of its transfinite impli-
cations. He even called Anzahl “a new concept not previously in existence”
(Cantor,7 p. 71, Cantor’s emphasis) and pointed out that any transfinite
number must be “quite a new kind of number” (Jourdain,48 p. 74). Hence
he did not see himself, like Galileo and Bolzano, as merely deducing facts
about the sizes of transfinite sets from a well established notion of number,
but as defining new concepts. If he did not regard this as mere stipula-
tion, it can only be because he thought that some concepts were coherent
and counted as concepts of number, while others, not. But that much is
perfectly consistent with the NMMA.

If we take Cantor’s words seriously, then, we must conclude that he
saw see himself as extending the concept of number, and with some degree
of freedom. Further, he did so in light of some explicitly acknowledged
motivations. He cited a need to employ the Anzahlen in the theory of
point sets as well as some applications to function theory (Cantor7). But
he also stated goals in philosophy and natural science that help to explain
his interest in both the Anzahlen and the powers, namely the resolution
of certain difficulties in the philosophical systems of Leibniz and Spinoza,
which he thought would help us to develop a rigorous and “organic” account
of nature. The standard account of Cantor’s motives largely ignores these
remarks and places his main motives within mainstream function theory
(e.g., Jourdain;9,48 Dauben70). However, Ferreirós39 makes a strong case
that Cantor was not chiefly concerned with mainstream mathematics but
with broad biological, physical, and even spiritual matters. Cantor is quite
explicit about this in an 1884 letter:

e It is not clear, then, why Cantor categorically rejected Euclid’s Principle. Surely it

was in part because the Euclidean notions of number on offer, such as Bolzano’s and

Veronese’s, seemed incoherent. But one is also led to speculate that Cantor’s bouts of
dogmatism were partly because of his vitriolic debate with Veronese over the coherence

of infinitesimals. (The opposite has been suggested, i.e., that Cantor opposed Veronese
because he was dogmatic about his concept of number, but Cantor vehemently denied
infinitesimals as early as 1878 (Ewald,73 p. 867), well before introducing his transfinite

numbers.) It is worth noting too that Cantor’s Anzahlen made some concessions to

Euclid’s Principle. Not every proper part of a well ordered set has smaller Anzahl than
the whole, but every proper initial segment does. The Anzahlen thus partly reflect the

idea, encoded in Euclid’s Principle, that if we add more elements to an infinite set, we
have a larger set, though for Anzahlen this only holds if the new elements are added at
(or sufficiently near) the end of a sequence.
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I have been working on this project of a precise deepening into the
essence of everything organic for 14 years already. It constitutes
the real motivation why I have confronted, and during this time
have never lost sight of, the fatiguing enterprise of investigating
point-sets, which promises little recognition. (Ferreirós,39 p. XX)

Through the background of German Romantic Naturphilosophie and
Cantor’s own testimony, Ferreirós shows that by “organic” Cantor did not
simply mean biological; rather he sought a natural philosophy unifying
mechanistic and spiritual elements.

Cantor’s work on this program raised key mathematical goals for his
theory of the transfinite, namely to illuminate what we now call the topo-
logical and measure-theoretic features of physical space and objects. For
example, he proposed an analysis of matter into a countable infinity of
point-like corporeal “monads” and a continuum of point-like ethereal mon-
ads, and used his theorems on point sets, power, continuity, and outer
content to offer explanations of various physical phenomena (Ferreirós39).
Thus Cantor’s investigation of the transfinite was in considerable part mo-
tivated by an interest in the qualitative structural features of space and
matter. In particular, he shared with Galileo and Bolzano an interest in
the relations between numerosity and geometric magnitude (addressed by
Cantor in terms of dimension and outer content), the analysis of matter
into a continuum of points, and the application of this analysis to explain
physical phenomena.

Cantor did not deliberately design his concept of cardinal number to
serve those goals, but that concept developed very gradually under their
influence, each conceptual development being spurred by new applications
and results. Cantor took up questions about bijection even before 1869
(Ferreirós,39 p. 52), long before arriving at the notions of power, countabil-
ity, and last of all cardinal number. Soon after he raised the question of
a bijection between the whole numbers and the reals, in an 1873 letter to
Dedekind, he wrote, “[I]t has no special practical interest for me. And I en-
tirely agree with you when you say that for this reason it does not deserve
much effort” (Ewald,73 p. 844). Yet an answer, he pointed out, would yield
a new proof of the existence and density of the transcendental numbers, and
once Cantor accomplished that, Dedekind remarked that this proved the
problem was interesting and worthy of effort (ibid., p. 848). In 1877 Cantor
developed the proof that there is a bijection between a line segment and
any n-dimensional continuum, and simultaneously began using the word
‘power’ (Ewald,73 p. 853ff.). In the publication of that result (Cantor21),
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he even defined the notions of smaller and larger powers, and pointed out
the fact that the even numbers have the same power as the positive in-
tegers. The term ‘countable’ or ‘denumerable’ did not appear until 1882,
when Cantor proved that, in modern terms, an n-dimensional space can in-
clude at most countably many disjoint open sets (Cantor61). At that time,
only sets of the first two infinite powers were known. Only after using the
ordinals to generate an infinite hierarchy of powers and producing several
more theorems on the powers of point sets (including that countable sets
have zero content; Cantor72) did Cantor adopt the term ‘cardinal number’
(Cantor,59 from a lecture of late 1883 — but see note d, section 5).f Thus
his concept of cardinal number evolved, in a dialectical milieu of applica-
tions and innovations, most of which concerned the structure of continuous
spaces and point sets within them. If Cantor did not deliberately design the
concept to shed light on such matters, those interests nonetheless seem to
have exerted a selection pressure on the concept’s evolution. In this respect
the concept was tooled to fit its motivations.

The result was tremendously successful. Cantor’s physical hypotheses
were as speculative and mistaken as Galileo’s infinity of point-vacua and
Bolzano’s smooth plenum of variable density, but still, his theory of trans-
finite numerosity was much more fruitful than those of Galileo and Bolzano
concerning all three of the shared motivations we have identified. Not only
did Cantor offer a way out of objections to the particulate analysis of the
continuum, such as the supposedly absurd consequence that one obtains
infinities of different sizes — all three thinkers managed that — but he also
initiated a rich and ultimately coherent theory of such sizes which shed
further light on the structure of continua. He was able to show that while
there are different sizes of infinity (powers and order types), line segments
of different lengths have the same powerg, and if both segments are closed,
the same order type (a consequence of Cantor,27 p. 134), contrary to Sim-

f Apparently, Cantor had also worked out cardinal arithmetic in a manuscript of 1885.

Jourdain48 (p. 79) reports this, but perhaps based on Cantor’s footnote in Cantor?

([1887-88] 1932 (411)), which is in fact a bit vague (“[E]r ist der Hauptsache nach

vor bald drei Jahren verfaßt . . . ”). In any case, if Cantor did develop cardinal arithmetic
before or simultaneously with adopting the term ‘cardinal number’ (also contrary to
Jourdain; see note d, section 5), then this would further explain Cantor’s construal

of power as cardinal number, for, one justification he gave for calling his ordinals by
the name ‘number’ was their possession of a systematic arithmetic (in an 1882 letter;

Ewald,73 p. 876).
g In effect, Bolzano53 showed this too, but he did not have the notion of power, i.e., of

an equivalence class induced by bijection, and he did not take a bijection between sets
to show anything significant.
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plicio’s argument (Galileo,20 p. 31). Thus he was able to distinguish clearly
between geometric magnitude and “number of elements”. He further showed
that continua of different dimensions have the same power (Cantor21), and
that finite and countable point sets have zero magnitude (Cantor61). And
though his own speculations on the structure of matter failed, his theory of
the transfinite has in fact afforded some insight into physical phenomena.

The fact that countable sets have measure zero has been especially useful
in this regard. Given a measure-zero set of possible states for some physical
system, it is generally plausible to assume that the probability of the system
taking on one of those states at a given time is zero. (Poincaré74 made much
use of this assumption in his celestial mechanics, and it plays a key role in
statistical mechanics (Sklar75).) The same, then, goes for countable sets
of states. In one interesting application, Hadamard76 showed that, of the
continuum-many bounded geodesics through a given point on a surface of
negative curvature, only countably many are asymptotic to closed curves.
Hence, “almost all” bounded curves on such a surface — with regard to
power, measure, and frequency — are thoroughly non-periodic, and this
is reflected in the typically chaotic behavior of many dynamical systems.
Thus power sheds light on physical phenomena.

I say that such results — those concerning the structure of continua,
the relations between numerosity and magnitude, and physical phenom-
ena — are good reasons to regard Cantor’s theory of the transfinite as
successful relative to the goals that he shared with Galileo and Bolzano.
Whether this accounts for the popular success of his theory is another ques-
tion. No doubt the fact that countable sets have zero measure largely ex-
plains the introduction of Cantor’s cardinals in many elementary analysis
texts, and this in turn must have contributed to their widespread accep-
tance. Other contributing factors likely include applications of both power
and Anzahl in function theory and analysis (Cantor,77 p. 260; Mittag-
Leffler;78 Borel;79 cf. Hallett80), the support of Weierstrass, Mittag-Leffler
and Hilbert (Dauben;81 Hilbert82,83), Frege and Russell’s use of power in
their definitions of number (Frege;51,84 Russell52), Frege’s proof of the ax-
ioms of arithmetic from Hume’s Principle (Frege;84 cf. Hale and Wright49),
and perhaps most of all, the intrinsic nature of power, the fact that it is
independent of the nature and ordering of elements (a point emphasized
by both Frege51 and Russell52). No doubt the last two points are strong
reasons to count Cantor’s theory a genuine success, popularity aside, but
this is true relative to certain goals, and not the ones we have identified as
common to our three historical figures.
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To summarize the essential points we have noted about Cantor’s theory,
(1) Cantor was pluralistic about concepts of numerosity, within limits; (2)
such pluralism implied indeterminacy in some questions about numerosity;
(3) Cantor explicitly stated certain philosophical and scientific motivations;
(4) each of the three common goals we have attributed to Galileo and
Bolzano was either included in or raised by Cantor’s explicit motivations;
(5) Cantor did devise new concepts of numerosity, though he did not regard
them as entirely free inventions; (6) he did so gradually, while discovering
applications and results that apparently influenced the theory; and (7) the
resulting concepts proved to be very useful for the common goals we have
identified.

6. Gödel

The NMMA (section 2) takes it for granted that we can identify questions
that lack a determinate answer, and that we are free to extend and refine
concepts and meanings as we wish. Yet some metaphysicians hold that cer-
tain questions, whose answers surely seem indeterminate, nonetheless have
unique factual answers (Lewis;33,34 Sider;36,37 Olson31). One might think
that the reference of numerosity expressions was likewise predetermined,
before Cantor’s work, in such a way that any extension of the number
concept that produced different results would be not only inapt but false.
Gödel’s view was close to this (Gödel47). He claimed that Cantor’s concept
of cardinality as well as the axioms of set theory had a self-evident truth
that we cannot help but recognize, if we carefully examine the concepts that
we already loosely grasp. But in arguing that such ideas are forced upon
us, Gödel neglects the fact that they are overdetermined. With the concept
of numerosity as with our other intuitions about sets, the very principles
that once seemed undeniable have led to paradoxes, including Galileo’s, and
cannot be maintained. Gödel (op. cit.) had an excuse for the other para-
doxes of set theory: they result from misapplying the intuitive principles to
exotic, impossibly comprehensive collections, such as the set of all sets. If
we admit only sets of pre-established objects (the iterative conception of
set), the paradoxes do not arise. But this is not so for Galileo’s Paradox;
that problem lives right in our back yard, among the whole numbers. If we
want to have any notion of transfinite numerosity we must face up to it
and adopt a notion (or several) that violates either Euclid’s Principle or
Hume’s (or both).

Admittedly, Gödel gives a very compelling argument for Hume’s Prin-
ciple: If two sets can be put in one-to-one correspondence, then we could
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conceivably alter the individual elements of one set until they were indistin-
guishable from their counterparts in the other, and then surely the two sets
must have the same numerosity. I say this is very compelling, but nonethe-
less it is only an intuition pump. Gödel disregards the fact that Euclid’s
Principle is also intuitively compelling! If set A contains everything that is
in set B and also some further things, then it contains more. Both Euclid’s
and Hume’s Principles seem forced on us. To have a consistent theory of
transfinite numerosity, we must break free of these forces, much as Gauss
and Lobachevsky broke free of the parallel postulate. We have learned from
them that intuitions do not limit our freedom to form counterintuitive con-
ceptions. Even if Hume’s Principle seems stronger than Euclid’s, no ade-
quate reason has been given to believe that it is unrevisable or a brute fact.
It is up to us to choose our preferred principles, or to articulate an arsenal
of different concepts incorporating different principles.

On the other hand, Gödel’s realism might supply a reason to regard
a conception as false. If one concept satisfying some of our intuitions has
an ontological status privileged over others, we might therefore regard that
concept as the one that we had loosely grasped all along. In other words,
some special “existence” (or some other property) beyond mere consistency
might make one concept more eligible than others. If such eligibility helps
to determine reference, then there might be a fact about which transfinite
relation is really the referent of ‘more’ and other such terms. Again, it
seems wisest to ignore such considerations and focus on the motivations for
a concept; never mind what the referent of the pre-theoretic term is, let us
establish new concepts that bake some bread. But now we may worry that
we cannot even do that; the “real” objects may be so much more eligible in
virtue of their “reality” that we cannot force our words to mean anything
else.

The usual objection to Gödel’s realism is that it makes our possession of
mathematical knowledge inexplicable (Benacerraf;85 cf. Maddy11,89). Gödel
proposes a special faculty of mathematical perception, but since abstract
objects lack causal efficacy, such a faculty seems impossible. The objection
I have raised just above gives us further reason for doubt: The fact that
our intuitions sometimes lead us into paradox suggests that we have no
trustworthy mathematical perception. Why then should we suppose that
such “perception” is anything but prejudice?

A standard alternative to Gödel’s form of realism is the indispensabil-
ity argument. In Quinian terms, it says that if we accept a theory, we are
committed to the objects over which its quantifiers range. Insofar as our
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best empirical theories involve quantification over mathematical objects,
we should accept that those objects exist (Quine;86 Putnam87,88). However,
this faces charges of contradicting mathematical practice, for mathemati-
cians believe in many things that have not yet proven useful (Maddy,11

pp. 106–7, pp. 153–60). Maddy11 instead proposes that we take mathemat-
ical considerations and motivations, such as the desire to provide a universal
foundation for all of mathematics, as the arbiters of mathematical truth.
Quine’s and Maddy’s views do not seem to give us reason to deny the exis-
tence of other objects besides those that serve empirical and mathematical
goals,a but we might worry that scientific usefulness itself implies a strong
eligibility that prevents us referring to other things.

But suppose there are indeed irresistible mathematical reference mag-
nets. How might that affect mathematical practice? Can we not still give
alternative definitions and theories, and follow out their consequences? Even
if we do not succeed in referring to the things we wish to, this has no im-
pact on what we can logically deduce. Hence it again seems that all that
is important about a concept or theory, beyond consistency, is its interest
and fruitfulness.

7. Conclusions

It has been claimed here that at least some genuinely philosophical prob-
lems are solvable by the Method of Conceptual Articulation, and some have
already been solved by such means. In particular, Galileo’s Paradox was re-
solved by the articulation of numerosity into distinct concepts, including
those of proper inclusion, Anzahl, and power. Granted, none of our his-
torical figures saw themselves as stipulating extensions of the concept of
number with complete freedom. Cantor in particular seemed to recognize
that he was presenting genuine extensions, but not arbitrarily; he regarded
his multiple conceptions as forced by his mathematical needs, by the deter-
minate iterative process that defined the ordinals, and by considerations of
naturalness. But new extensions they were nonetheless.

Power has become the basis of an elegant and useful theory and has
proven especially useful in addressing the motivations common to Galileo,

a Gödel of course has argued from his theorems on the incompleteness of arithmetic that

there is more to mathematical truth than mere consistency. But even if we agree with
Gödel that there is a unique system of whole numbers — a unique intended model for our

axioms of arithmetic — that is no reason to deny the existence of other objects, of non-
standard models of arithmetic. Indeed, their existence is implied by the incompleteness

theorems and the completeness of first-order predicate logic.
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Bolzano and Cantor, namely, to grasp the relations between numerosity and
geometric magnitude, to defend the analysis of the continuum into points,
and to explain physical phenomena. It is in virtue of its success in serving
such motivations that Cantor’s theory of transfinite numbers constitutes a
solution to some of the deeper philosophical problems posed by Galileo’s
Paradox.

Nonetheless, to say that power is the only correct notion of numerosity
is distorting. Anzahl too can be considered as a notion of numerosity, and
Cantor did so conceive it. Furthermore, order extension theorems like Dug-
gan’s give us reason to think that a theory of numerosity satisfying Euclid’s
Principle is possible.

In its näıve form, the Method of Conceptual Articulation presupposed
that empty questions could be identified and concepts freely refined or mod-
ified. These presuppositions face many challenges, perhaps most forcefully
from externalist theories of reference. But those challenges do not bear on
the most important elements of the method. However reference works, and
whether or not we can distinguish between determinate and indeterminate
questions, we can still, at least sometimes, identify background motivations
for our philosophical puzzles, if perhaps after the fact, and we can articulate
concepts, or theories if you prefer, that serve to address those motivations.
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